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ABSTRACT

Synthesis parameters are of utmost importance for controlling the particle sizes of cellulose 
beads. This study aims to investigate the effects of synthesis parameters e.g., stirring speed 
(250–1250 rpm), surfactant concentrations (0.5–6.0% w/v), cellulose concentrations (1–5% 
w/v), and reaction temperature (30-100°C) on the particle sizes for micron-sized cellulose 
beads (µCBs) as well as other parameters e.g. the volume (1.0 mL) and concentration 
(0.1–1.0% w/v) of cellulose for nanosized (nCBs) cellulose beads using the response 
surface methodology (RSM). A total of 27 runs were conducted applying RSM based on the 
central composite design approach with Minitab-19. Cellulose concentrations were shown 
to have the most significant effect on both µCBs and nCBs. Under optimized conditions, the 
minimum and maximum mean particle size of µCBs that could be achieved were 15.3 µm 
and 91 µm, respectively. The predicted mean particle size for nCBs was obtained at 0.01 nm 
as the smallest and 200 nm as the biggest particle size under the optimum conditions. This 
study envisages that RSM and experiments for targeted applications such as biomedicine 
and agriculture could optimize the particle sizes of cellulose beads. 

Keywords: Cellulose beads, controlled particle 
sizes, microbeads, nanobeads, response surface 
methodology

INTRODUCTION

Cellulose fibers have attracted tremendous 
interest as a precursor material for the 
synthesis of micro-beads and nanobeads 
due to their vast availability, renewability, 
cost-effectiveness, biocompatibility, 
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biodegradability (Balart et al., 2021; Gericke et al., 2013; Jampi et al., 2021; Kalia et al., 
2011; Xu & Cho, 2022). Cellulose fibers can be isolated from various cellulosic wastes such 
as cotton, sawdust, and printed paper (Pang et al., 2011, 2018; Voon et al., 2016). Cellulose 
beads in nano and micron sizes have a high potential to be used in various technological and 
biomedical applications such as solid support, ion exchange, and water treatment (Alazab 
& Saleh, 2022; Saleh, 2021), protein immobilization (Califano et al., 2021; Culica et al., 
2021; Guo et al., 2021) and delayed drug release (Gülsu & Yüksektepe, 2021; Ho et al., 
2020; Mohan et al., 2022), slow-release fertilizer (França et al., 2021; Gomes et al., 2022; 
Machado et al., 2022), dye removal (Hamidon et al., 2022; Harada et al., 2021; Meng et 
al., 2019) and heavy metal removal (Du et al., 2018; Hu et al., 2018; Liu et al., 2021) due 
to their versatility and eco-friendliness (Carvalho et al., 2021).

Many researchers have attempted the water in oil microemulsion and nanoprecipitation 
methods to synthesize µCBs and nCBs, respectively. Water in oil (W/O) microemulsion is 
thermodynamically more stable than oil in water by protecting the water-soluble molecules 
inside a continuous oil phase (Li et al., 2022; Russell-Jones & Himes, 2011; Song et al., 
2020). Surfactant is crucially needed in forming microemulsion (Li et al., 2018). Owing to 
their adequate cutaneous tolerance, low irritation potential, and less toxicity than anionic 
surfactants, non-ionic surfactants are preferable, such as sorbitan monooleate, Span 80 as 
attributed to its biodegradability, biocompatibility, and safe to use in food, cosmetic as 
well as drug production (Conforti et al., 2021; Lechuga et al., 2016; Roque et al., 2020).

Nanoprecipitation is a straightforward and versatile method that involves the complex 
interaction between mixing, supersaturation, nucleation, and particle growth (Tay et al., 
2012). Thanks to its simplicity and reproducibility, this process is greatly explored to 
synthesize nanoparticles (Yan et al., 2021). Response surface methodology (RSM) has 
been widely adopted as it helps achieve optimal conditions with a minimum number of 
trials (Karri et al., 2018; Sebeia et al., 2021; Shahnaz et al., 2020). Several studies have 
demonstrated that the RSM method is a very effective and versatile method for determining 
the effects of multiple synthesis parameters on the morphology and properties of the 
synthesized products (Allouss et al., 2019; Chin et al., 2021; Jancy et al., 2020; Lee & 
Patel, 2022; Pal et al., 2022; Wu & Hu, 2021).

The synthesis parameters profoundly affected the particle sizes of the µCBs and nCBs 
(Chin et al., 2018; Voon et al., 2015, 2017b). However, without a proper understanding of 
the underlying mechanisms between each synthesis parameter and the particle sizes, it is 
very challenging to precisely and consistently control the particle sizes of the µCBs and 
nCBs. Therefore, a systematic study of the effect of synthesis parameters on the particle 
sizes for µCBs and nCBs by both the experimental method and the RSM is of utmost 
importance to allow precise control of their particle sizes for targeted applications. In this 
study, the effects of synthesis parameters on mean particle size for µCBs and nCBs were 
investigated and optimized using the RSM. 
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MATERIALS AND METHODS

Materials and Reagents

Paper wastes were obtained from Universiti Malaysia Sarawak, particularly on the campus of 
Faculty Resource and Science Technology. Chemical substances such as sodium dihydrogen 
phosphate or NaH2PO4 (Sigma Aldrich), alpha-cellulose (Sigma Aldrich), as well as disodium 
hydrogen phosphate or Na2HPO4 (Sigma Aldrich) were obtained. Procurement was made 
for hydrochloric acid or HCl (Merck), sodium hydroxide or NaOH (Merck), urea (Merck), 
thiourea (Merck), sorbitan oleate or known as Span 80 (Merck), paraffin oil (Merck), absolute 
ethanol (Merck), as well as sodium dodecyl sulfate or SDS (Merck). No further purification 
was needed for every chemical applied. Phosphate buffer saline solution, PBS, was prepared 
using sodium dihydrogen phosphate, NaH2PO4 (1.0 M), and disodium hydrogen phosphate, 
Na2HPO4 (1.0 M) solutions. Ultrapure water (~18.2 MΩ·cm, 25°C) was obtained from the 
Water Purifying System (ELGA, Model Ultra Genetic).

Extraction of Cellulose Fibres

The extraction of cellulose fibers from paper waste was based on our published methods 
(Voon et al., 2016, 2017a, 2017b). Approximately 100 g of paper waste was turned into 
powder by grinding and then sprinkled onto the water with constant stirring of 2000 rpm 
for 2 hours. A treatment with NaOH solution (12.0 wt%) in 24 hours was required for 
the slurry and, eventually, with HCl solution (3.0 wt%) at 80°C for 2 hours to eliminate 
hemicellulose, lignin together with residual ink. Refined cellulose fibers were then cleaned 
with ultrapure water, followed by the drying process in an oven ranging from 60°C to 
100˚C for 24 hours to ensure the water content remained below 0.5%. A comparison of the 
cellulose sample and commercial alpha-cellulose based on the FTIR spectrum was made 
to confirm the purity of the cellulose sample.

Dissolution of Cellulose

Dissolution of cellulose fibers was conducted by dissolving and sonicating the measured 
quantity of cellulose fibers in an aqueous-based solvent system, NTU solvent (100 mL) 
with the composition proportion at 8: 6.5: 8 (% w/v) of NaOH: thiourea: urea respectively 
for half an hour. The resulting dispersion was cooled by putting it inside a freezer under 
-20°C for 24 hours to achieve a solid frozen mass and later defrosted at normal room 
temperature to collect a transparent cellulose solution (Voon et al., 2017a).

Preparation of Cellulose Beads

Fabrication of Micron-sized Cellulose Beads (µCBs). µCBs were synthesized from the 
cellulose solution by employing the water-in-oil (W/O) microemulsion technique and the 
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surfactant and precipitating agent, Span 80 and acetic acid, respectively. Span 80 in 0.6 g 
was commonly dissolved at room temperature in paraffin oil (20 mL). Afterward, half an 
hour of stirring for the resulting mixture to ensure the homogenized oil phase was attained. 
Next, microemulsion formation was achieved by adding drop by drop of the cellulose 
solution (3.5 mL) into the obtained oil phase, along with 1000 rpm of constant stirring for 
1 hour. Under vigorous agitation, precipitation of µCBs was observed after incorporating 
10% acetic acid. The resulting mixture was used in a separating funnel to obtain cellulose 
beads and, later, rinsed once with deionized water and two times with absolute ethanol to 
eliminate the remaining NTU solvent, paraffin oil, and Span 80. The mean particle size 
of µCBs formed was controlled by modifying the synthesis parameters, which are the 
stirring speed (250 rpm–1250 rpm), quantity of surfactant (0.5% w/v–6.0% w/v), cellulose 
concentration (1.0% w/v–5.0% w/v) and reaction temperature (30°C–100°C). Ultimately, 
µCBs were kept in ethanol (20% v/v) at 0–5°C  (Voon et al., 2017a).

Fabrication of Nanosized Cellulose Beads (nCBs). The cellulose solution (1 mL) 
of several concentrations (0.1% w/v–1.0% w/v) was added in a drop-by-drop manner 
to a specified amount of absolute ethanol (6 mL) just when initiating ultrasonication. 
Precipitation was seen immediately with a cloudy appearance, indicating the formation 
of nCBs. The obtained suspension was centrifuged. After that, the precipitate was washed 
five times with absolute ethanol to get rid of the excess NaOH, urea, and thiourea to obtain 
the nCBs (Voon et al., 2017a).

Response Surface Methodology (RSM)

By using Minitab-19 software, a total of 27 runs were made to investigate the effects of 
synthesis parameters on the mean particle sizes of the µCBs and nCBs. Specifically, 22 
runs were for µCBs. The p-values for each parameter for both µCBs and nCBs are lower 
than 0.05, as stated in the coded coefficients in Table 1. In addition, the listed p-values in 
the ANOVA table (Table 2) for the model also provided further validation, deducing that 
it is statistically significant for all the parameters involved. As shown in Figures 1(a) and 
(b), the Pareto charts also predicted the same justification. Therefore, the significance of 
all the synthesis parameters on the mean particle sizes was accurate as estimated by the 
models applied. 

The model’s R2 value and adjusted R2 (Table 3) for µCBs were estimated to be 
approximately 92.79% and 88.36%, respectively. As for nCBs, the R2 and adjusted R2 
have the same value of 100%. The evaluation of the goodness of the fit was dependent 
on statistical parameters like p-value, R2, and adjusted R2 (Kim et al., 2020). In this case, 
these models displayed low p-values, high R2, and adjusted R2, indicating that the synthesis 
parameters used for controlling the particle sizes of the cellulose beads were a good fit with 
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Table 1
Coded coefficients table of the synthesis parameters for µCBs and nCBs

Term Coef SE Coef T-Value P-Value VIF
µCBs Constant 35.17 3.72 9.44 0.000*  

Stirring speed (rpm) -14.75 2.51 -5.88 0.000* 1.12
Span 80 concentration (% w/v) -7.56 2.27 -3.33 0.005* 1.07
Cellulose concentration (% w/v) 13.32 2.79 4.77 0.000* 1.00
Temperature (°C) 17.85 2.21 8.07 0.000* 1.62
SS2 13.19 4.38 3.01 0.010* 1.10
SC2 17.44 3.91 4.46 0.001* 1.10
CC2 -2.51 3.46 -0.73 0.481 1.13
T2 10.28 3.95 2.60 0.022* 1.59

nCBs Constant 38.23 0.237 161.15 0.004*
Cellulose concentration (% w/v) 67.12 0.153 437.51 0.001* 1.75
VC (mL) 32.90 0.166 197.85 0.003* 2.38
CC2 61.79 0.254 243.54 0.003* 1.50

Note. Superscript * refers to the statistically significant parameters (p< 0.05). SS2 represents the squared stirring 
speed, SC2 is the squared Span 80 concentration, CC2 is the squared cellulose concentration, T2 is the squared 
temperature, and VC is the volume of cellulose. µCBs involve SS (250–1250 rpm), SC (0.5–6.0% w/v), CC 
(1–5% w/v), and T (30–100°C), while nCBs are VC (1 mL) and CC (0.1–1.0% w/v).

Table 2
Analysis of variance (ANOVA) table for µCBs and nCBs

Source DF Adj SS Adj MS F-Value P-Value
µCBs Model 8 3261.29 407.66 20.92 0.000*

  Linear 4 2633.13 658.28 33.79 0.000*
    Stirring speed (rpm) 1 674.39 674.39 34.61 0.000*
    Span 80 concentration 1 216.52 216.52 11.11 0.005*
    Cellulose concentration 1 443.56 443.56 22.77 0.000*
    Temperature (°C) 1 1269.51 1269.51 65.16 0.000*
  Square 4 754.90 188.73 9.69 0.001*
    SS2 1 176.55 176.55 9.06 0.010*
    SC2 1 387.36 387.36 19.88 0.001*
    CC2 1 10.27 10.27 0.53 0.481
    T2 1 131.62 131.62 6.76 0.022*
Error 13 253.28 19.48   
  Lack-of-Fit 10 175.63 17.56 0.68 0.720
  Pure Error 3 77.65 25.88   
Total 21 3514.57   

nCBs Model 3 21934.80 7311.60 196270.43 0.002*
  Linear 2 21828.50 10914.20 292979.26 0.001*
    Cellulose concentration (% w/v) 1 7130.60 7130.60 191412.39 0.001*



2810 Pertanika J. Sci. & Technol. 31 (6): 2805 - 2822 (2023)

Kimberly Wei Wei Tay, Suk Fun Chin, Mohd Effendi Wasli and Zaki Musa

Table 3
Model summary table of the synthesis parameters for µCBs and nCBs

S R-sq** R-sq(adj)** R-sq(pred)
µCBs 4.41395 92.79% 88.36% 64.17%
nCBs 0.19301 100.00% 100.00% -

Note. ** High values of R-squared and R-squared (adj.) are indicated. µCBs involve SS (250–1250 rpm), SC 
(0.5–6.0% w/v), CC (1–5% w/v), and T (30–100°C), while nCBs are VC (1 mL) and CC (0.1–1.0% w/v).

Source DF Adj SS Adj MS F-Value P-Value
    VC (mL) 1 1458.30 1458.30 39146.31 0.003*
  Square 1 2209.60 2209.60 59313.64 0.003*
    CC2 1 2209.60 2209.60 59313.64 0.003*
Error 1 0.00 0.00
Total 4 21934.80  

Note. Superscript * refers to the statistically significant parameters (p< 0.05). SS2 represents the squared stirring 
speed, SC2 is the squared Span 80 concentration, CC2 is the squared cellulose concentration, T2 is the squared 
temperature, and VC is the volume of cellulose. µCBs involve SS (250–1250 rpm), SC (0.5–6.0% w/v), CC 
(1–5% w/v), and T (30–100°C), while nCBs are VC (1 mL) and CC (0.1–1.0% w/v).

Figure 1. Pareto charts for the mean particle sizes of (a) µCBs and (b) nCBs, where µCBs are SS (250–1250 
rpm), SC (0.5–6.0% w/v), CC (1–5% w/v) and T (30–100°C); nCBs are VC (1 mL) and CC (0.1–1.0% w/v)
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the model. Equations 1 and 2 demonstrated the regression equations in uncoded units of 
the models for both sized cellulose beads, respectively.

Particle sizes (µm) = 96.90 - 0.1086(SS) - 17.74(SC) + 10.43(CC) - 0.581(T) + 
0.000053(SS)2 + 2.306(SC)2 - 0.629(CC)2 + 0.00839(T)2          [1]

Particle sizes (nm) = 0.000 - 112.93(CC) + 65.80(VC) + 247.17(CC)2         [2]

Where SS is the stirring speed, SC is the Span 80 concentration, CC is the cellulose 
concentration, T is temperature, and VC is the volume of cellulose.

RESULTS AND DISCUSSION

Effect of Synthesis Parameters on the Mean Particle Sizes for µCBs

Effects of Stirring Speeds. Figures 2(a) and (b) illustrate the respective contour and surface 
plots for the effects of stirring speed and Span 80 concentration on the mean particle sizes 
of µCBs. Both plots anticipated that the minimum mean particle size of 30.2 µm could be 
attained with a stirring speed of 1023.4 rpm and 3.9% w/v of Span 80 concentration. At 
the same time, a maximum mean particle size of 87.5 µm was obtained under 254 rpm and 
0.5% w/v Span 80 concentration. In our previous study, the smallest 27.6 µm and 64.5 µm 
particle sizes of µCBs were produced under 1000 rpm and 250 rpm, respectively, with 2% 
w/v Span 80 (Voon et al., 2017a). A slow stirring speed would decrease the kinetic energy of 
particles. Eventually, aggregation of particles may tend to occur. Shi et al. (2011) mentioned 
the difficulty dispersing the cellulose solution in the oil phase under less than 300 rpm 
stirring speed. The size of the microsphere would also increase under slower stirring (Luo 
& Zhang, 2010), whereas an increase of 500 rpm stirring speed could lead to a reduction 
of at least half in the size of cellulose microspheres (Jo et al., 2019; Lefroy et al., 2022) 
because aggregates would break apart under higher stirring speeds (Kemin & Chin, 2020). 
As cellulose contains many hydroxyl groups (Shi et al., 2021), the formation of cellulose 
molecules’ intra and intermolecular hydrogen bonds was likely to occur. However, the 
strong stirring force produced from the high stirring speed might damage the structure of 
the beads, causing a reduction of compressive strength (Li et al., 2020). 

In the presence of surfactants, the interaction of polymer chains would be hindered, 
forming various reduced mean particle sizes (Tay et al., 2012). Surface tension between 
particles could be decreased, preventing coalescence from producing smaller particles 
when applying an optimum surfactant concentration (Chin et al., 2014). For instance, the 
presence of a carbonyl group would result, as indicated by a strong absorption peak at 
around 1700 cm-1 (Essawy et al., 2016; Guan et al., 2017). It further proved the combination 
of surfactants with the cellulose and the hindrance of the intermolecular hydrogen bond 
aggregation of the cellulose due to the exposed hydrophobic polymer chains (Wang et al., 
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2019). An increment of surfactant concentration can enhance the micelle formation and 
lead to a larger mean particle size (Ching et al., 2019; Jo et al., 2019). It has resulted in 
instability and aggregation of particles, thereby producing larger microspheres (Chin et al., 
2014; Hakim et al., 2020). As surfactant concentration increased, the number of micelles 
also increased, which enhanced the formation of surfactant-polymer complexes via the 
electrostatic and hydrophobic interactions (Bhardwaj et al., 2018). 

However, it had been reported that an increase in surfactant concentrations from 0 
% to 3% w/v showed a significant reduction in the particle size of microspheres (Alnaief 
et al., 2011; Voon et al., 2017a). Specifically, 3% w/v of surfactant concentration was an 
optimum concentration for fully covering the whole surface area of droplets, providing great 
stabilization in forming smaller particle sizes (Chin et al., 2014). Therefore, the optimal 
conditions for forming the smallest mean particle size of beads were approximately 1000 
rpm, and within 4% w/v Span 80 concentration could be employed, proving a satisfactory 
agreement exists between the experimental and predicted results.

Figure 2. The effects of stirring speed and Span 80 concentration on the mean particle sizes of µCBs: (a) 
contour; and (b) surface plots (With 3% w/v cellulose concentration; 65°C)
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The effects of stirring speed and cellulose concentration on the mean particle sizes 
of the µCBs are shown in Figures 3(a) and (b). The results showed that the mean particle 
size would decrease using a lower stirring speed and higher cellulose concentration. The 
plots estimated a minimum of 15.3 µm cellulose beads would be obtained at 1031.4 rpm 
and 1.0% w/v of cellulose concentration. Conversely, the maximum mean particle size of 
73.8 µm would be expected to be produced using a stirring speed at 251 rpm and 5.0% 
w/v cellulose concentration. The smallest particle size achieved experimentally was 
approximately 14.5 µm and the largest at around 42.3 µm when cellulose concentration 
increased from 1.0% w/v to 5% w/v, under 1000 rpm (Voon et al., 2017a). 
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The viscosity of the cellulose solution is dependent on the cellulose concentrations. 
An adequate viscosity can be found in a higher concentration of cellulose, which helps to 
resist the increased deformation forces (Schroeter et al., 2021). The number of cellulose 
molecules would increase when cellulose concentration increased (Chin et al., 2016). A 
slower agitation speed was accompanied during the process. It could lead to the formation 
of many big aggregates accompanied by high strength and resistance to the disintegration 
of porous structures (Li et al., 2022). Similarly, Druel et al. (2018) reported cellulose 
concentration as the major contributor to regulating the size of the beads. High cellulose 
concentration with low stirring speed would promote larger growth of particles, while 
low cellulose concentration with high stirring speed produced smaller particles. Previous 
studies highlighted the emulsification process of cellulose, enabling extensive production 
of microspheres with tailored particle sizes as well as distributions (Costa et al., 2019; 
Shi et al., 2021; Winuprasith & Suphantharika, 2015). Hence, the experimental results 
concurred with the predicted RSM data of approximately 15 µm and 70 µm with respect 
to the minimum and maximum particle sizes of the µCBs.

Figure 3. The effects of stirring speed and cellulose concentration on the mean particle sizes of µCBs: (a) 
contour; and (b) surface plots (With 3.25% w/v Span 80 concentration; 65°C)

Particle sizes 
(µm)
< 20
20 - 30
30 - 40
40 - 50
50 - 60
60 - 70
> 70

Pa
rti

cl
e 

si
ze

s 
(µ

m
) 80

60

40

20

Stirring speed (rpm)

300
600

900
1200

Cellulose concentration 

(% w/v)1.0
2.5

4.0

5.5

300   400  500   600   700   800  900  1000 1100 1200
Stirring speed (rpm)

C
el

lu
lo

se
 c

on
ce

nt
ra

tio
n 

(%
 w

/v
)

5

4

3

2

1

(a) (b)

The contour and surface plots for the effects of stirring speed and reaction temperature 
on the mean particle sizes of µCBs were presented in Figures 4(a) and (b), respectively. 
The prediction of the plots for the minimum of 23.3 µm cellulose beads would require 
1022 rpm and 34.2°C. When the reaction temperature increased to 100°C and with stirring 
speed at 251 rpm, a maximum mean particle size of 91 µm could be synthesized. It showed 
that the higher the stirring speed and the lower the reaction temperature, the smaller the 
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particle size of cellulose beads. Under an optimum 1000 rpm, the smallest 26.1 µm and 
the largest 67.2 µm of µCBs were obtained experimentally when the reaction temperature 
was at 30°C and 100°C, respectively (Voon et al., 2017a).

As previously stated, a low stirring speed can give rise to the agglomeration of 
particles. Temperature also had strong influential effects on particle sizes. Increased 
temperature is capable of speeding up the movement of droplets, increasing the instability 
of the oil/water interface, elevating the coalescence of the droplets, and eventually, 
causing phase separation of the emulsions (Tong et al., 2015). It was reported that an 
increase in temperature could decrease the viscosity of cellulose solution (Bhardwaj et al., 
2018). Bigger particle size could be obtained due to decreasing viscosity and increased 
surface tension when the temperature of the cellulose solution increased (An et al., 2021). 
At a low temperature, coagulation took place at the inner layer as it enfolded the cellulose 
molecules densely and caused a little shrinkage of the bead (Trygg et al., 2013). The 
microemulsion droplets would remain stable under a low temperature and vice versa at 
higher temperatures, resulting in smaller beads. At the same time, an optimum stirring 
speed would also be required. Emulsion stability is also associated with the surfactant 
type and amount (Akbari & Nour, 2018). In addition, Span 80 surfactants are shown to 
be influenced by temperature due to the critical micelle concentration, whereby droplet 
size would remain the same above the critical value (Michor & Berg, 2015). Thus, an 
optimum temperature is critical to achieving the desired particle sizes of cellulose beads. 
Overall, the estimated RSM data agrees with the experimental work reported (Voon et 
al., 2017a).

Figure 4. The effects of stirring speed and temperature on the mean particle sizes of µCBs: (a) contour; and 
(b) surface plots (3% w/v cellulose concentration; 3.25% w/v Span 80 concentration)
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Effects of Synthesis Parameters on the Particle Sizes of nCBs

Effect of Cellulose Concentration. Figures 5(a) and (b) showed the contour and surface 
plots of cellulose concentration on the mean particle sizes of nCBs. The plots showed that 
the mean particle sizes of nCBs increased linearly with the volume and concentration of 
the cellulose solution used in the synthesis. The plots predicted that a minimum of 0.01 
nm could be obtained when 0.2 mL of 0.2% w/v cellulose concentration was used. On the 
other hand, a maximum of 200 nm of nCBs could be produced by using 1.0 mL of 1.0% w/v 
cellulose concentration. As determined experimentally, the smallest 57 nm and largest 200 
nm of mean particle sizes of nCBs were obtained at 0.1% w/v and 1.0% w/v of cellulose 
concentration, respectively, using a constant 1.0 mL cellulose solution (Voon et al., 2017a).

The hydrophilicity of cellulose molecules can cause the aggregation of particles via 
hydrogen bonds and, eventually, the formation of bigger clusters of particles (Ren et al., 
2014). Higher cellulose concentration will lead to high viscosity, creating a more firm 
network (Li et al., 2015). Interaction of cellulose/non-solvent molecules would increase 
under higher cellulose concentration, causing cellulose accumulation (Chin et al., 2016). 
Lince et al. (2008) reported the three stages of the formation of nanoparticles using 
nanoprecipitation: nucleation, growth, and aggregation. The insolubility of cellulose 
in water prompted nucleation to happen and form a solid nucleus within the drop. The 
deposition of more molecules will lead the nucleus to develop as mediated via coalescence 
as well as interchange with other drops (Ethayaraja et al., 2007). Ostwald ripening effect 
could cause the formation of large agglomerated particles over time (Maity et al., 2008). 

Figure 5. The effects of cellulose concentration on the mean particle sizes of nCBs: (a) contour; and (b) 
surface plots
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Hence, bigger nCBs would be expected to be produced when more volume of higher 
cellulose concentration was used, which further verified the consistency of the predicted 
RSM values with our previous work. 

CONCLUSION

The synthesis parameters of µCBs and nCBs were successfully determined using response 
surface methodology via the central composite design. The effects of several important 
synthesis parameters such as the stirring speed (250–1250 rpm), Span 80 concentration 
(0.5–6.0% w/v), cellulose concentration (1–5% w/v) and the reaction temperature 
(30–100°C) on the mean particle sizes of µCBs were determined, whereas the volume 
(1 mL) and the concentration (0.1–1.0% w/v) of the cellulose solution were used to 
tailor the particle sizes of the nCBs. The results of this study would allow the control 
of µCBs and nCBs particle sizes via fine-tuning of the synthesis parameters. The model 
was proven capable of precisely elucidating the experimental data by manipulating the 
ANOVA, p-value, R2, and adjusted R2. Hence, this study demonstrated that by precisely 
controlling the synthesis parameters to modulate the particle sizes of the µCBs and 
nCBs. µCBs and nCBs with tailored particle sizes would have promising potential as 
controlled release carriers for drugs or fertilizers in various fields such as biomedical, 
pharmaceutical, and agricultural. 
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